翻訳と辞書
Words near each other
・ Autorack
・ Autoradio (Belarus)
・ Autoradiograph
・ Autoradiopuhelin
・ AutoRAI
・ Autorail
・ Autorail à grande capacité
・ Autoramas
・ AutoREALM
・ Autoreceptor
・ Autorefractor
・ Autoregressive conditional duration
・ Autoregressive conditional heteroskedasticity
・ Autoregressive fractionally integrated moving average
・ Autoregressive integrated moving average
Autoregressive model
・ Autoregressive–moving-average model
・ Autoregulation
・ Autoreille
・ Autoreplace
・ Autoresponder
・ Autoreview
・ Autoridad Nasionala del Ladino
・ Autoridade da Concorrência
・ Autoridade de Segurança Alimentar e Económica
・ Autoridade Nacional de Comunicações
・ Autorinnenvereinigung
・ Autoritat del Transport Metropolità
・ Autoritat Territorial de la Mobilitat de l'Àrea de Girona
・ Autoritat Territorial de la Mobilitat de l'Àrea de Lleida


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Autoregressive model : ウィキペディア英語版
Autoregressive model

In statistics and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it describes certain time-varying processes in nature, economics, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term (a stochastic—an imperfectly predictable—term); thus the model is in the form of a stochastic difference equation. It is a special case of the more general ARMA model of time series, which has a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which consists of a system of more than one stochastic difference equation.
==Definition==

The notation AR(p) indicates an autoregressive model of order ''p''. The AR(''p'') model is defined as
: X_t = c + \sum_^p \varphi_i X_+ \varepsilon_t \,
where \varphi_1, \ldots, \varphi_p are the ''parameters'' of the model, c is a constant, and \varepsilon_t is white noise. This can be equivalently written using the backshift operator ''B'' as
: X_t = c + \sum_^p \varphi_i B^i X_t + \varepsilon_t
so that, moving the summation term to the left side and using polynomial notation, we have
:\phi (B)X_t= c + \varepsilon_t \, .
An autoregressive model can thus be viewed as the output of an all-pole infinite impulse response filter whose input is white noise.
Some parameter constraints are necessary for the model to remain wide-sense stationary. For example, processes in the AR(1) model with |\varphi_1 | \geq 1 are not stationary. More generally, for an AR(''p'') model to be wide-sense stationary, the roots of the polynomial \textstyle z^p - \sum_^p \varphi_i z^ must lie within the unit circle, i.e., each root z_i must satisfy |z_i|<1.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Autoregressive model」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.